Phytochemistry 13, 853.

- 17. Bohme, H. and Schneider, E. (1939) Ber. 72, 780.
- 18. Dictionary of Organic compounds, Vols 1-5 (1965). Eyre &

Spottiswoode, London.

 Raj, K., Misra, S. C., Kapil, R. S. and Popli, S. P. (1976) *Phytochemistry* 15, 1787.

Phytochemistry, Vol. 23, No. 12, pp. 2966-2967, 1984. Printed in Great Britain.

0031-9422/84 \$3.00 + 0.00 © 1984 Pergamon Press Ltd.

3,4,8,9,10-PENTAHYDROXY-DIBENZO[b,d]PYRAN-6-ONE FROM TAMARIX NILOTICA

M. A. M. NAWWAR and A. M. A. SOULEMAN

National Research Centre, El-Dokki, Cairo, Egypt

(Revised received 15 May 1984)

Key Word Index—Tamarix nilotica; Tamaricaceae; flowers; phenolic lactones; 3,4,8,9,10-pentahydroxy-dibenzo[b,d]pyran-6-one; ellagic acid; structural determination.

Abstract—A new natural product, 3,4,8,9,10-pentahydroxy-dibenzo-[b,d]pyran-6-one was isolated from the flowers of Tamarix nilotica which also contains the known compound ellagic acid, 2,3,7,8-tetrahydroxy [1]benzopyrano[5,4,3-cde][1]benzopyran-5,10-dione. The structure of the new compound was determined by chemical and spectroscopic methods. The ¹³C MNR spectrum of ellagic acid was recorded and assigned.

INTRODUCTION

The aqueous acetone extract of the flowers of Tamarix nilotica was reported by us to contain the methyl and ethyl esters of gallic acid, p-methoxygallic acid, kaempferol and quercetin 3-O-glucuronides, the 3-O-sulphated kaempferol 7,4'-dimethyl ether and the free flavonols, kaempferol, quercetin and kaempferol 7,4'-dimethyl ether beside the digalloylglucose, niloticin [1, 2]. Further investigation of this extract afforded the new natural phenolic lactone, 3,4,8,9,10-pentahydroxy-dibenzo[b,d]pyran-6-one and ellagic acid (2). In this paper we report the isolation and structural elucidation of 1. Also, the ¹³C NMR data of ellagic acid is reported for the first time. Compound 1 is another natural product added to the well known biosynthetic transformation products of hexahydroxydiphenic acid such as breviofolin and chebulic acid [3]. Also, it belongs to the 3,4-benzocoumarins, which are of rare natural occurrence.

RESULTS AND DISCUSSION

The last fraction, eluted with methanol from the polyamide column of the aqueous acetone extract of the flowers of *T. nilotica* [2], was shown by 2D-PC, in UV light to contain two fluorescent compounds 1 and 2, apart from the yellow flavonols which were previously investigated [2]. Pure samples of 1 and 2 were isolated by applying a polyamide column fractionation of this methanolic fraction using ethyl acetate saturated with water as an eluent.

Compound 1 was isolated as colourless needles which gave a molecular formula $C_{13}H_8O_7$ by high resolution mass spectrometry. On PC, 1 appeared as a fluorescent blue spot in UV light. It gave a blue ferric chloride reaction and remained unchanged after acid or alkaline hydrolysis. On alkali-fusion it yielded 4,5,6,2',3',4'-hexahydroxybiphenyl (co-PC and UV data). The IR spectrum of 1 showed strong absorption at 3400, 1695, 1630 and

HO
$$\frac{9}{8}$$
 $\frac{9a}{7}$ $\frac{1}{6a}$ $\frac{1}{60}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

Short Reports 2967

1610 cm⁻¹, consistent with the presence of phenolic hydroxyl, α -pyrone C=O and benzenoid C=C groups, respectively. The mass spectrum showed an [M]⁺ at m/z276 and a sequential loss of 28 mu fragments, a fragmentation pattern which is in agreement with that reported for coumarins bearing oxygen functions [4]. The chemical and spectral (UV, IR and mass spectrum) analytical data of 1 were found to be closely similar to those given for the benz α -pyrone coumarins [4] as well as to those reported for ellagic acid derivatives [5], and suggested a pentahydroxy 3,4-benzocoumarin structure for 1. The identity of 1 as 3,4,8,9,10-pentahydroxydibenzo [b,d] pyran-6-one was achieved by comparison with an authentic sample prepared from ellagic acid as described by Perkin et al. [6] (mp, mmp, R_f -values and UV data, see Experimental). A study of the ¹H NMR of 1 lent further support to this view. The spectrum showed two doublets at $\delta 6.8$ and 8.44 assignable to the two ortho aromatic protons at C-1 and C-2 in addition to one singlet at δ 7.46 assignable to the aromatic proton at C-7 (see formula). In the ¹³C NMR spectrum of 1, the assignment of the recorded signals as aided by comparison with the ¹³CNMR data of ellagic acid (see Experimental) and hexahydroxydiphenic acid dimethyl ester [7]. The spectrum showed 11 signals assigned as follows: one signal at δ 161.58, assignable to the carbonyl carbon C-6, six signals in the region from $\delta 133.07-151.47$ assignable to the oxygenated carbons and four signals in the region from δ 108.8 to 118.4 assignable to the protonated and quaternary carbons. The 13C NMR data thus confirmed the structure of 1 to be 3,4,8,9,10-pentahydroxydibenzo $\lceil b, d \rceil$ pyran-6-one.

Compound 2 was obtained as faint yellow crystals identical with ellagic acid (mp, mmp, R_f -values and UV data) [8]. It had an MW of 302 as shown by FAB-mass spectrometry and its IR spectrum showed absorption at 3380, 1720, 1690 and 1610 cm⁻¹, thus suggesting the presence of phenolic hydroxyl, α -pyrone C=O and benzenoid C=C groups. The symmetrical molecule of 2 gave a ¹H NMR spectrum which contained only one singlet at δ 7.5 assignable to the two identical protons at C-4 and C-9 (see formula). In the ¹³C NMR spectrum of 2 assignments of the recorded signals (see Experimental) was achieved by applying the substituent rules on the ¹³C NMR data of 2,7-dimethoxy ellagic acid (3,8-dihydroxy-2,7-dimethoxy-[1]benzopyrano[5,4,3-cde] [1]benzopyran-5,10-dione) [8].

EXPERIMENTAL

NMR spectra were measured at 100 MHz and chemical shifts were measured relative to TMS. ¹³C NMR chemical shifts were relative to DMSO-d₆ and converted into the TMS scale by adding 39.5. Typical conditions: spectral width 5000 Hz 8K data points and a flip angle of 45°. PC was carried out on Whatman No. 1 using solvent systems 1–3: 1, H₂O; 2, HOAc-H₂O (3:17); 3, BAW (n-BuOH-HOAc-H₂O, 4:1:5, upper layer).

Plant material and fractionation. An aq. Me₂CO extract of the

flowers of T. nilotica was worked up as reported in ref. [2].

Isolation and identification. The last fraction, eluted with MeOH from the polyamide column of the aq. Me₂CO extract was dried under vacuum and applied to a sub-column using polyamide (polyamide 6 S for CC) as adsorbent and EtOAc satd with H₂O for elution. Compounds 1 and 2 were individually eluted in the last two successive fractions.

3,4,8,9,10-Pentahydroxy-dibenzo[b,d]pyran-6-one (1). Purified by crystallization (twice) from Me₂CO, mp 318°; R_f -values: 00 (H₂O), 22 (HOAc), 46 (BAW); UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 219, 264, 287 (inf), 349 (inf). Acid hydrolysis (2 N aq. HCl, 100°, 7 hr) or alkaline hydrolysis (5% aq. KOH, 100°, 3 hr) had no effect on 1. It yielded 4,5,6,2′,3′,4′-hexahydroxybiphenyl when fused with KOH at 245° for 3 min. Fusion product: R_f -values: 44 (H₂O), 56 (HOAc), 41 (BAW); UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 259. IR of 1: $\nu_{\rm max}$ cm⁻¹: 3400, 3300, 2910, 2850, 1690, 1610, 1590; MS m/z (rel. int.): 276 (100, [M]+), 248 (8), 247 (10), 219 (15), 191 (10), 163 (12), 115 (10), 89 (12), 73 (15), 55 (18); 1 H NMR: δ 8.44 (d, J = 9 Hz, H-1), 6.8 (d, J = 9 Hz, H-2), 7.46 (s, H-7); 13 C NMR: δ 161.58 (C=O), 151.47, 146.4, 145.98, 143.55, 140.62, 133.07 (C-3, C-4, C-4_a, C-8, C-9, C-10), 118.4, 112.46, 112.06, 108.8 (C-6_a, C-7, C-10_a, C-4_b).

Ellagic acid (2). Purified by crystallization from pyridine, mp > 360°; R_f -values: 00 (H₂O), 09 (HOAc), 48 (BAW); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 255, 362. On alkali-fusion (KOH, 245°, 3 min) 2 yielded 4,5,6,2',3',4'-hexahydroxybiphenyl, identified as given above. It yielded 1 on boiling with 75% aq. KOH for 10 min. IR of 2: v_{max} cm⁻¹: 3380, 3270, 1720, 1690, 1610, 1575, 1485; FAB-MS (mu): 302 ([MH]⁺, 303); ¹H NMR: δ7.5 (s, H-4 and H-9); ¹³C NMR: δ158.8 (C=O), 148 (C-3 and C-8), 139.2 (C-2 and C-7), 136.6 (C-1_a and C-6_a), 110.6 (C-4, C-4_a, C-9 and C-9_a), 107.3 (C-4_b and C-9_b).

Acknowledgements—The authors are greatly indebted to Dr. J. Buddrus and Dr. M. Linscheid, Institut für Spektrochemié, Bunsen-Kirchhoff Str. 11, D-4600 Dortmund 1, W. Germany for their constructive suggestions during the course of this study.

REFERENCES

- Nawwar, M. A. M., Souleman, A. M. A., Buddrus, J., Bauer, H. and Linscheid, M. (1984) Tetrahedron Letters 25, 49.
- Nawwar, M. A. M., Souleman, A. M. A., Buddrus, J. and Linscheid, M. (1984) Phytochemistry 23, 2347.
- Haslam, E. (1977) Biochemistry Of Plant Phenolics (Swain, T., Harborne, J. B. and Van Sumere, C. F., eds) p. 495. Plenum Press, London.
- Murray, R. D., Mendez, J. and Brown, S. (eds) (1982) The Natural Coumarins, Occurrence, Chemistry and Biochemistry. John Wiley, New York.
- Geevanada, Y. A., Gunawardane, P., Savitri, N. and Sultanawa, S. (1979) Phytochemistry 18, 1017.
- Perkin, A. G. and Nierenstein, M. (1905) J. Chem. Soc. 87, 1432.
- Gupta, R. K., Sabah, M. K., Layden, K. and Haslam, E. (1982)
 J. Chem. Soc. 2532.
- Nawwar, M. A. M., Buddrus, J. and Bauer, H. (1982) Phytochemistry 21, 1755.